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The high hydrostatic tensile stress field induced early microvoid nucleation
which promoted flow localization leading to fracture. However, both mode I (Kp.)
and mode II (Kyye) critical stress intensity factors directly related to the
critical particle distance ()\/VR).

A bimodal fracture toughness model has been developed for this material and
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and stress-strain behavior. Excellent agreement was found between calculated and
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INTRODUCTION

The phenomenon of shear instability and flow localization in ultrahigh strength
(UHS) steels is of considerable interest because 1t is one of the principal fracture
mechanisms during ballisiic penetration. This fracture mechanism is a limiting factor in the
design and use of UHS steel armor. Much of the reported research has focused on the
thermal sortening effect arising from the high strain rate adiabatic constraint. The
conventional view is that the phenomenon can be treated as a continuum plastic instability
problem. Models based on isothermally derived empirical constitutive relations have been
used to account for strain localization conditions observed in high strain rate shear tests, but
recent experiments have cast doubt on the validity of this approach [1]). Experimental
evidence strongly suggests that flow localization in UHS steels is dniven by microvoid
softening controlled by nucleation at fine dispersions {2]. In addition, a direct correlation
has been demonstrated to exist between fracture toughness and shear instability strain in
these sweels {2]). This study is aimed at determining relationships between second-phase
particle size, type, and distribution on shear localization and fracture toughness, with the
ultimate objective of understanding and controlling the ballistic penetration and dynamic

fracture of UHS armor steels.
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The phenomenon of deformation localization as it occurs in ballistic penetration is
tllustrated in Figure 1 [3], showing the localized deformation mode of failure, commonly
referred to as adiabatic shear. The plastic flow after the onset of shear instability is
concentrated in thin shear bands which appear white after metallographic etching. The
localized flow produces a 'shear plugging' failure mode in which the material ahead of the

projectile is ejected as a solid cylindrical piece absorbing relatively littie associated energy.

Much has been written over the past forty years on the subject of shear localization.
The reviews by Rogers [4,5] and Bedford (6], give an excellent overview of ihe general
phenomenon including the microstructures resulting from the localized flow. The
continuum plasticity theory of adiabatic flow localization is treated by Clifton [{7], and a

general survey of strain localization is given by Argon [8].

A concise treatment of the specific influence of «diabatic shear in armaments and
ballistics can be found in the review of Samueis and Lamborn [9]. Olson et al. [10]
eadzavored to computer model the ballistic penetration event of high strength steels using
experimentally derived constitutive flow relations, but met with limited success. The

authors proposed that the material exhibited a pressure dependence that the conventional

thermal softening models could not describe. Experiments were designed to determine

how the pressure dependence affects the deformation of UHS steels.

More recent research by Azrin et al. 1], demonstrated that the critical strain for
shear localization in UHS 4340 steel is nearly identical for both quasi-static and dynamic
loading conditiors. While thermal softening undoubtedly provides a contribution to the

measured stress-strain relations, this result of nearly identical instability strains and shear




Figure 1. Photomicrograph of a 4340 steel (Rc 52) plate (5.6 mm thick) that underwent a
localized failure during ballistic impact. Note the white etched shear bands beneath the area
of impact.




localization behavior in UHS steels at both high and low strain rates indicated that another

flow softening phenomenon was equally important.

As was reviewed in Olson er al. [10], observations that the instability strain is
strongly influenced by the hydrostatic component of stress, together with metallographic
evidence of microvoid nucleation at second-phase particles, indicate that the fracture related
processes can also contribute to the strain softening effects underlying plastic shear

localization (2,11,12]. Such phenomena must also be taken into account for a complete

understanding of flow localization and subsequent shear banding.
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Portior . of this section were taken directly from the recent review by Cowie and
Tuler [13]. This literature review describes the various modelling approaches to the

problem of shear localization.

According to Anand [14], "Our state of understanding of the various features of the
shear band localization phenomenon appears to be in its infancy,” although the beginnings
of quantitative models of shear localization have been established [15]. A schematic
representation of shear localization and the onset of shear band formation is presented in

Figure 2.

The purpose of this literature review is to identify and describe these shear
localization models. Various approaches to the problem have been aitempted. The diverse
models are separated into four categories: flow softening constitutive, deformation heating,
textural softening and void nucleation softening models. In addition, a section on flow
localization in fracture has been included which describes the state of understanding of the
relatinnship between shear instability and fracture toughness. It is thought that continued
progress toward fully understanding shear banding will require corresponding

developments in expenmentation and modelling.
Flow Softening Constitutive Models

The bifurcation of deformation analysis concentrates on the macroscopic continuum
level and explores the conditions for which the pre-localization constitutive relations will

pennit shear banding. Plastic strain localization owing to flow softening in the presence of

metallurgical defects has been modelled by Semiatin and Jonas [16] for axisymmetric
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Figure 2. Schematic representation of the shear Jocalization process and an accompanying
stress-strain curve. Labelled points on the curve are associated with the various stages of
deformation of the block of material. The material begins to yield (0), and then undergoes
uniform deformation (A,B) up to the instability (C), after which shear bands begin to form

(D).




deformation such as isothermal uniaxial compression. The model requires that the matenial

behaves according to the parabolic strain and strain rate laws
T=kymyn

where 1 is the shear flow stress, k is the material constant, Yis the shear strain rate, ¥ is the
shear strain, m is the strain rate sensitivity exponent, and n is the strain hardening

exponent.

Addidonal restrictions of this model are that the material is isotropic, the von Mises
yield criterion holds, and the deformation is performed under plane strain conditions. The
model uses a strain-depencent flow localization parameter (@) to rank the materials
according to their tendency for shear instability. The flow localization parameter 1s

calculated from experimentally determined material parameters

1 do

“ode lE

where @ is the flow stress, € is the strain, and € is the strain rate. For a given strain, if o
is greater than zero, flow localization is permitted whereas, when « is less than zero, no

localization can occur.

Deformation Heating

Deformation-heating-produced flow softening models have been developed.
Starting with a mechanical equation of state originally formalized by Baron [17], Culver

[18] derived a thermal instability model which was then modified by Semiatin and Jonas




[16]. This model has led to a simple equation relating the critical strain to localization ()
during high strain rate deformation to other experimentally determined parameters

pen
)

'yi ==
B(a—T
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where p is the density, C is the specific heat, n is the work hardening exponent, 1 is the
shear flow stress, T is the temperature, v is the shear strain, ¥ is the shear strain rate, and

is the fraction of plastic work converted to heat.

This model was subsequently tested by Staker's expanding cylinder tests [19].
Staker's experimental results show that localization occurred for a > 3.5 (not ¢ > 0 as
predicted by the model), which somewhag supports this deformation heating model (Figure
3.

A more recent thermoplastic instability model has been proposed by Clifton er al.
{20] which in some ways resembles Culver's analysis [18]. The resulting final relation

equates the instability strain under high strain rate conditions with material parameters

where v is the thermal softening parameter.

However, experimental data on high strength AISI 4340 steel have revealed that
strain rate has no effect on the critical strain to localization (Figure 4) [1]. Therefore, it is

concluded that adiabatic heating had little influence on initiating an instability in high

strength steel and that other phenomena are responsible for producing the softening [1].
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Textural Softening

Even though shear band initiation is commonly associated with softening, there
exists little evidence for flow softening before localization under isothermal conditions
[21]. This does not preclude some type of softening mechanism from involvement in
initiating shear bands. Textural or geometric softening resulting from lattice reorientation
during straining produces soft textures with respect to shear bands [21]. A matenal's
resistance to strain localization may be bound by some intrinsic characteristic of the plastic
flow process such as the yield surface vertex structure which originates from the inherent
nature of crystalline slip [21,23]. Shear strain localization can occur if a vertex develops on

the yield surface defined for the material [22].

The extent to which textural softening influences the promotion of shear instability
is directly related to the amount of uniform strain preceding the locaiization. In other
words, higher strength materials which receive small strains preceding localization have a

lesser textural softening effect. The converse is also true.

Although much experimental and analytical work has been performed on lower
strength materials in the form of sheet metal forming tests, no research on the textural
softening effect has been reported on these higher strength materials. To separate the
effects of textural softening from the other metallurgical factors contributing to strain
localization, shear tests similar to those performed by Azrin et al. [1] should be performed

on highly textured, high strength material and compared with the isoropic counterpart.
Void Nucleation Softening

Not all localization phenomena can be considered applicable to the bifurcation of

deformation theoretical model. A bifurcation analysis cannot allow for the important roie of

11



material defects in shear band initiation [24). The critical strain at which strain localization
develops in addition to the susceptibility to plastic instability is acutely sensitive to material
inhomogeneities {25]. When subjected to an increasing triaxial stress state, void nucieation
can promote plastic flow localization and shear instability [23,26]. A sudden burst of
nucleation events may result in a destabilization of the plastic flow by strain localization into
shear bands [26,27]. The existence of voids can substantially change the bulk plastic flow

constitutive relationship.

For the purposes of modelling, the material can then be viewed as a plastically
dilating continuum which allows the possibility of strain softening, with simultaneous
strain hardening of the surrounding matrix material [21,28]. Likewise, the macroscopic
effect of void formation has been modelled as an apparent volume loss of load-bearing
material [29]. A variety of local material defects will always exist in real materials, and it is
probable that the numerous closely spaced shear bands, observed by Anand and Spitzig
[30] in a maraging steel at relatively small strains, are localizations initiated by

inhomogeneities.

The softening induced by microvoid nucleation produces macroscopicaily
observable strain localization [31]. Therefore, an established critical stress void nucleation
model is included in this review. A critical stress criteria model based on dislocation
models developed by Argon et al. [32] provides the relationship for the inclusion-matrix
interfacial stress (for large inclusions where the radius R > 100 A).  For materials which
have a large interparticle spacing (A), the inclusions can be considered non-interacting.

The equaton for the interfacial stress is

Oy = ko[(%)“n + V’E{-—\/Eu‘“”)%}"ﬁm)].
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For materials which have a small interparticle spacing, the inclusions can be considered

interacting. The equaton for the interfacial stress becomes

n ﬁ_(%q_)_ "mo e
6,,=k°[(%) +*f§{ (%)} +V6—]

where Oy is the interfacial tensile stress, K, is the yield stress in shear, y is the shear
strain, Y, is the shear strain at yield, n is the stain hardening exponent, M is the Taylor

factor, A is the interparticle spacing, and R is the particle radius.

Interactions between inclusions cccur when the plastic zones of neighboring

particles touch. The critical strain rado for particle interaction is detcrmined by [32]
;Y_ M \/’Ek)n-r'l
(yo) =76 (n+1) \MR/ -

When the volume fraction of inclusions is small, the particles act in isolation to very
large strains. In addition, the interfacial stress is independent of the inclusion radius and
spacing. However, when the volume fraction is large, the particles interact at very small
strains. The interactions enhance the interfacial stress and hasten particle-matrix separation,
i.e., void nucleation [33). The critical interfacial stress to void nucleation varies with the
size and distribution of particles. The number of nucleated voids is a direct function of the
A/R ratio. Given the same volume fractic~ (i.e., the same A/R ratio), small, evenly
distributed particles permit larger strains prior to void nucleation. Conversely, large or
unevenly distributed particles nucleate at relatively small strains, and ultimately degrade the
material’s ductility [33). Therefore, it can be inferred that both ductility and fracture

toughness depend on tae critical interfacial stress to nucleation.
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From tension tests performed on three different materials by Argon and Im [33],
good agreement was found between theory and experiment. They calculated that void
nucleation occurs at second-phase particles or inclusions when the interfacial stress
produced by the combined effect of hydrostatic tension and drag of the plastically flowing
matrix equals the interfacial cohesive strength. For spheroidized 1045 steel, the
experimentally calculated strength was 35.1 MPa. However, the theoretically calculated
interfacial strength was 77.6 MPa, considering no particle interactons, and 41.0 MPa with
particle interactions considered. This good agreement between theory and experiment leads

to the assumption that this model is valid.
Flow Localization in Fracture

C . ent research is focusing on the role of flow localization in fracture of
elastoplastic matierials under quasi-static conditions. When flow localization devclops in
advance of a pre-existing microcrack as a result of the interactions of microstructural
inhomogeneities, local hydrostatic stresses and strain concentrations necessary to drive the
fracture process are attained witiiin the shear band. High concentrations of microstructural
inhomogeneities result in early degradation of a material's load bearing capacity [34].
Microvoid nucleation can be regarded as the micromechanism responsible for plastic

instability and constitutes an important fracture process for elastoplastic matenals.

In the case of spheroidized steel, the value of critical strain at which strain
localization initiates is approximately the strain at the microscopic level for microcrack
extension {35,36]. Numerical models based on J, corner thecry of plasticity demonstrate
that the shear bands initiate at the surface of a blunted crack tip [37]. Together, these
observations indicate that microvoid nucleation and flow localization are part of the fracture

process, and govern the prevailing deformation field in the process zone [34].
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The destabilizing influence of void formation increases with interfacial stress to

void nucleation [34]. In other words, the size, type and distnbution of the inhomogeneities
present in the material, the matrix strain hardening rate w.nd the local stress state control the
extent of the localized void profusion and the promotion of plastic instability. The extent of
localized void profusion governs the ease of microcrack extension. The onset of crack
propagation as enhanced by void profusion is usually signified by a pop-in failure, i.e., a
rapid load drep following maximum load in a load displacement curve. However, crack tip

blunting is more prominent when the void profusion is more homogeneous, leading to

%ﬁ
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higher toughness as crack propagation becomes dependent on the plastic deformation

involved in void growth and coalescence rather than localizaton.
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Schwalbe [38] lists two of the more successful relationships between K|, particle

spacing and other material properties
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where & = _chnt_
and &, is the critical crack tip opening displacement, r is the width of region of intense

plastic deformation in the vicinity of the crack tip, Oys is the yield strength, v is Poisson's )

ratio, A is the interparticle spacing, n is the matrix strain hardening exponent, and E is the A

modulus of elasticity. -

o

E

The onset of crack propagation in precracked elastoplastic ¢ mponents is sometimes =
preceded by crack tip blunting. The crack growth controlling micromechanism, whether

i el

void rucleation and flow localization or void growth and coalescence, 1s expected to
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determine whether the crack extends as a mode 1I shear crack along an instability trace (for

lower toughness), or blunts and grows by void coalescence (for higher toughness).

The factor which controls the magnitude of the stress intensity factor, where the
crack cxtension mechanism is a microvoid coalescence. is the nucleation event. The
nucleation event governs the initial void size in addition to the spacing between voids.
However, it is the initial void spacing that controls the final dimple size after coalescence
{39]. The fracture processes are neither considered nor resolved by the present continuum
mechanics fracture toughness models. In addition, little experimental data pertinent to the

nucleaton event have been published.
Flow Localization Summary

The various madels of flow localization have been reviewed. The flow softening
constitutive models provide a convenient way of rank:ng materials in order of their
tendency to form shear bands. However, constitutive models deal only with the
macroscopic phenomena and there is no provision for the inclusion of microscopic
parameters. The deformation heating models permit the caiculaiion of a material's
instability strzin - specifically at high strain rates. As in the case of flow sofiening
constitutive models, deformation heating models employ only bulk material properties and
do nnt ailow for imicroscopic inhomogeneities. Textural softening models incorporate a
geornetric softening resuliing from lattice reonentation during straining which produces soft
crystallographic textures with respect to shear bands. These models also fail to consider
the influence of microscopic inhomogeneities on shear localization. Additionally, textural
softening models are more app :able to low strength materials. Void nucleation softening
provide: a micromechanism by which flow iocalization can occur in engineering alloys.
This theory demonstrates that ductility is directly related to the critical interfacial stress to

nucteaton for a second-phase particle. Lastly, fracture has been related to the susceptibility
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of a particular material to flow localization. Consequently, fracture toughness is a function

of the size, type and distribution of second-phase particles.

[ believe that microvoid nucleation softening models provide an appropriate
description of the shear localizatior behavior in ultrahigh strength steels. In addition, 1
contend that fracture is related to second phase particles through the microvoid induced
shear loca:ization process in theses steels. It is my hope to prove these theories in this

thesis.
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RESEARCH PROGRAM

This study was initiated to quantitatively determine a relationship between the
second-phase particles, shear instability, and fracture toughness for UHS 4340 steel.
Experiments were also devised to study the effect of both hydrostatic stress and

nomalizing temperature on the critical strain to localization and fracture toughness.

A simple shear specimen was used to measure instability strain as described in the
Experimental Procedure section of this study. Stress-strain data and corresponding strain
profiles were obtained from each test in order to quantify the flow behavior in addition to

accurately determining the instability strain.

Quantitative metallography was performed on each specimen to determine the type,
size and distribution of the second-phase particles. A comparison was made between mode

I (tension) and mode II (shear) fracture.

Flow localization models are also described. A simple model relating fracture
toughness and microstructural features and properties has been developed from first
principles. The model is derived in the Toughness-Instability Correlations section of this

study.
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In this study, a vacuum-arc remelted (VAR) heat of AISI 4340 steel supplied by
Republic Steel was examined. The Chemical Composition is given in Table I. This

selection was made since extensive data exist on this heat of steel.

TABLE I. CHEMICAL COMPOSITION OF VAR 4340 STEEL
(Welght Percent)

L Mo SN _ O M P __S_ _Qu _A _N _O  Hppm
0.42 0.46 0.28 1.74 0.89 0.21 0.009 0.001 0.19 0.031 0.005 0.001 1.0

The material was heat treated for one hour at different normalizing temperatures
ranging from 845°C to 1100°C. Different normalizing treatments were employed in order
to create different second phase sizes and distributions. After normalizing, each specimen
was austenitized at 845°C for 15 min. and subsequently oil quenched. By austenitizing all
specimens at the same temperature, nearly identical prior austenite grain sizes and retained
austenite contents were obtained (see Results section). Two different tempering treatments
were used. The first tempering treatment was performed at 200°C for 2 hcurs which
resulted in a martensitic (stage I) structure with a fine dispersion of €—carbides and also
results in a maximum in the sharp crack toughness for UHS 4340 steel [40). If tempering
is performed at temperatures greater than 200°C (stage II and 1II), the benefit obtained
through the dissolution of second-phase particles is lost, due to microvoiding at cementite
particles [2]. The second tempering treatment was performed at 650°C for 2 hours which

resulted in a spheroidized cementite dispersed in lath martensite (stage 1) structure.

The fust aim of the research was to characterize the second-phase dispersions in

cach specimen in terms of type, size, and distribution as a function of the heat treatment.
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The second aim was to relate these quantified microstructural characteristics to the
tendency for shear localization. Shear tests were performed to obtain shear stress-strain
curves in order to relate them to the microstructure. It has been shown that shear instability
is induced by microvoid nucleation softening in the material and consequently is dependent
on the particle dispersions and the local stress state [2]. Therefore it was desired to identify
the microvoid initiating particles and determine how this varies with nomalizing
temperature and thé local stress state. By normalizing over a range of temperature,
variadons in particle size and distribution were achieved. Theoretical calculations reported
in the literature indicate that shear instability is more sensitive to inhomogeneities in the

distribution than to the overall volume fraction [41-43].

The third segment of the program involved fracture toughness testing of the various
heat treated specimens. The toughness behavior of UHS steel to high temperature
solutionizing has been well documented [44-47]. It was desired to obtain fracture
toughness data as a function of solutionizing treatment given a nearly constant austenite
grain size and retained austenite content. Consequently, various normalizing treatments
were performed followed by a single short austenitizing treatment in order to study just the
effects of dispersions on the fracture process without the complicating effects of grain size
and retained austenite variations. Both mode I (tension) and mode II (shear) loading
configurations were tested in order to determine the effect of hydrostatic stress on

toughness.
Quantitative Metallography

In order to relate the rechanical properties to the second-phase particles, it was
necessary to accurately determine particle size, type and distribution through quantitative
electron microscopy incorporating a statistical error analysis. The method used for

determining the size of the nearly spherical particles was diametral measurement in the
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plane of intersection of extracted particles. The replication technique was originated by

Fisher [48] as a means of identfying precipitates in steel.

Two stage extraction replicas were taken from the electropolished surface of each
specimen. Electropolishing was performed at 25 volts for 15 seconds in a polishing
solution of 10% perchloric acid and ethanol at room temperature. Electropolishing
selectively polished the matrix material leaving the particles protruding from the surface. A
thin sheet of acetyl cellulose film (Bioden®) was dissolved onto the specimen with reagent
grade acetone and allowed to harden. "At this stage, the particles were embedded into the
replica material. The acetyi cellulose film was then stripped from the polished surface and
subsequently coated with a thin layer of amorphous carbon using a vacuum carbon
evaporation technique. During coating, the replica was continually rotated so that a
uniform carbon layer is applied. The replica was then cut into 3 mm squares and placed on
100 mesh TEM specimen support grids. Lastly, the acetyl cellulose film was dissolved in

several baths of reagent grade acetonc and the replica was allowed to air dry.

This technique serves the purpose of a replica only in the sense that the contrast is
enhanced at the extracted particles as compared with the electron beam intensity
transmitting through the carbon support film as background. The unique advantage of
extraction replication does not lie in the enhanced image contrast but rather in the ability to
accurately measure the particle sizes and to identify the chemical nature of the particlcs by
using energy dispersive x-ray spectroscopy. The usefulness of extraction replication
therefore, really lies in the microscopy of the intrinsic particle structure. Random sampling
was employed to obtain statistically sigrificant data. Hundreds of particles per specimen
were measured. Log-normal particle size distribution curves were produced for each
specimen (see Results section). and geometric mean particle radii (R) were determined from

these data. A statistical analysis was performed to indicate the relative accuracy of these
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geometric mean radii. Statistical equations taken from Vander Voort [49] were used in this

analysis.

The average deviztion from the geometric mean is conveniently expressed by

calculauon of the standard deviation s of the data

_\[Z (R; - R)2
$= N - 1

where R; is the individual radius measurement, R is the geometric mean particle radius,

and N is the total number of measurements. Although the standard deviation is an
absolute measure of data dispersion, it is difficult to compare standard deviations when the
mean values differ somewhat. It is useful to calculate the 95 percent confidence limit
(95%CL) and the percent relative accuracy (%RA). The 95% CL can be determined

ts

95 /OCL=T_1

where t is the confidence level which is equal to 2 for 60<N<120 [49). This 95 %CL is
taken as the error of the mean particle radius value. In other words, if the mean radius was
measured repeatedly, 95 times out of 100 times, the mean radius would fall within this
error band. The percent relative accuracy (%RA) is determined by dividing the 95%CL
by the mean radius and expressing it as a percentage
% CV
%RA = 2222y 100,
For determining the distribution of particles, two dimensional : < alographic data

must be converted to three aimensional space [49]. Values of particle count per unit area

(N,) were obtained by simply counting the number of particles intercepting a planer

section using scanning electron microscopy (SEM). SEM was used because the particles

fluoresce making them easy to visualize, and because it was thought that not all particles
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contained in a planer section would be extracted by the replication technique. The volume

fraction (fy) is determined from the pianer relationship with Ny
fv= NA (RRZ)

where R is the geometric mean particle radius. More important than the volume fraction is
the physically meaningful interparticle spacing (A). In order to determine this spacing, the

particle count per unit volume (N, ) must first be determined from the volume fraction and

mean radius

fy

NV=4/3nR3-

The interparticle spacing (A) is defined as the mean distance from the centers of adjaceat

particles

A=N, R

The mean particle radii confidence limits were carried through the above calculations

resulting in interparticle snacing values having their own 95 percent confidence limits.
Shear Localization Testing

The specimen geometry consisted of a Charpy sized specimen with two narrow
gauge sections which are displaced simultaneously under simple shear conditions. This
specimen (Figure 5), commonly referred to as the double linear shear specimen, was
employed for both quasi-static and dynamic tests. Dynamic tests were performed in a
modified instrumented Charpy machine. The Charpy specimen fixture was replaced with
one that rigidly holds the ends of the double linear shear specimen. In addition, the
pendulum weight was increased by sixty percent in order to reduce the amount of

deceleration during straining thereby maintaining a relatvely constant strain rate. The shear
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Figure 5. Mechanical drawing, perspective drawing and loading schematic diagram of a
double linear shear specimen. The specimen is sheared within the two reduced sections at a
preselected speed V while an axial load P can be sup~rimposed on one end.
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fixture may also apply up to 2250 N normal compressive load to the specimen’s ends while
shear deformation is underway in order to assess the material's response to different stress
states. The load-time curve generated by the strain gauge instrumented tup is recorded and
stored in the memory of a high speed digital oscilloscope. These dynamic tests were
performed at an imposed strain rate in excess of 104 5", Quasi-static double linear shear
tests were performed on a hydraulic tension/compression test machine at an imposed strain

rate of 103 s -,

Shear swress-strain curves were generated from the load-displacement curves for the
low strain rate tests and from the oscilloscope voltage-time records for the high strain rate
tests. Suesses were determined using calibrated constants. In the case of the low strain
rate tests, shear strains were calculated from displacements, assuming uniform strain, and
verified with the instability strains extracted frons the specimens’ strain profiles. In the case
of the high strain rate tests, shear strains were determined from the instability struins
extracted from the specimens’ strain profiles. It was assumed that the instability strain
occurred at maximum load. A typical shear stress-strain curve generated from one of these
tests is presented in Figure 6. Tkis curve represents data from the material normalized at

1095°C, austenitized at 845°C, and tempered at 200°C resulting in a hardness of R 50.

To determine precise strain profiles, four longitudinal scribe marks were drawn
onto the gauge sections of each specimen before testing. After testing, shear strain as a
function of the position along the specimen axis was calculated from the local angle of the
scribe lines relative to the specimen centerline. This was accomplished by measuring the
angle (0) the scribe line made in a toolmaker's microscope and converting to shear strain

(y) through the simple relation: y=tar 6.
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Figure 6. Plastic shear stress-strain curve obtained from 4 quasi-staiic linear shear test of
VAR 4340 steel normalized at 1095°C, austenitizea at 845°C and tempered at 200°C. Shear
strain at maximum stress is 33 percent.




Dynamic tests were run to failure, while the quasi-static tests were generally run
until sufficient flow localization had occurred to produce a load drop of approximately ten

percent.

A typical strain profile obtained from a gauge section of a linear shear specimen
tested quasi-statically is presented in Figure 7. This profile is from the same test specimen
the shear stress-strain curve was generated from (see Figure 6). Intense strain localization
is found adjacent to the gauge section walls. This is consistent with both a hydrocode
computer simulation of simple shear of a rectangular body [10] and a finite element stress
analysis by Tracey and Perrone [48) of the double linear shear specimen geometry and
loading. Note that the shear stain plateau (henceforth defined as the macroscopic shear
instability strain) on the strain profile in Figure 7 corresponds with the shear strain at peak

stress on the stress-strain curve in Figure 6.
Fracture Toughness Testing

The general test procedures to determine mode 1 as well as mode II fracture

toughness (K, and K, ) are presented in this section. The K. tests were performed on

standard slow-bend type specimens th¢ K, tests were performed using a non-ASTM

standardized specimen and test procedure. These tests will be described in more detail

following the K, test description.
Mode I (Tension) Fracture Toughness Testing

A standard fracture toughness slow-bend specimen as described in ASTM E399-83

[51] was used to determine the critical mode I stress intensity factor (K.). The specimen

thickness (B) was 10.31 mm, while the specimen depth (W) was 25.45 mm. The crack

was formed by fatigue cracking a machined notch to a crack depth & ranging from 13.2
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Figure 7. Strain profile obtained from a quasi-static linear shear test of VAR 4340 steel
normalized at 1095°C, austenitized at 845°C and tempered at 200°C. The mean plateau
strain, defined as the macroscopic instability strain, is 33 percent.
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mm to 14.2 mm. The ratio a/W fell within the range of 0.45 < a/W < 0.55 required by
ASTM E399 [51]). Fatigue precracking was conducted at the lowest practical stress level

(<20 % of the yield strength) as recommended by Brown and Srawley [52].

The specimens were loaded at 3.8 mm min~! resulting in an average increase of
stress intensity of 60.5 MPavm min-! (33 to 165 is allowable). All specimens were
fractured in a stress intensity rate range of 34 to 85 MPavm min~!. The crack length was
measured to the nearest 0.5% at the center of the crack front and midway between the
center and the end of the crack front on each side. The average of the three measurements

was used as the crack length. The crack length of either surface was within 10% of the

average crack length as required by ASTM E399 [51]. The conditional load (Pg) was
determined using either the 5% secant offset load (Pg) or the maximum load (P,,,) of the
load-displacement curve, whichever occurred first. All specimens tested met the critical

size (a, B, W) requirements for plane strain conditions along with the requirement that
P nax’Pq ratio be greater than 1.10 Pg [S1]. Consequently, these tests were valid fracture

toughness tests, i.e. Kq = K.
Mode II (Shear) Fracture Toughness Testing

A novel mode 1I fatigue crack growth and fracture toughness specimen has been
developed by Buzzard er al. [53], which was named the LeRC (NASA Lewis Research
Center) Mode IT Specimen. The attributes of this particular specimen are that it contains

one single-ended notch and that the mode [ component is extremely small.

Prior to the development of the LeRC specimen, several other mode 1I test

specimens had been developed, but had limited success in determining K, . A vee-

notched specimen type designed by losipescu [54] has been used by several investigators,

but this specimen does not exhibit the classical mode I stress pattern, i.e., concentric
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semiellipses centered at the crack tip when tested with photoelastic material [53). Another
mude I specimen was developed by Richard [55], which produced a very good mode 11
photoelastic stress pattern [53]. However, at high loads this specimen fails at the grip
holes, waile at moderate loads the crack propagates from the crack tip toward the tensile-
loaded 1cg of the specimen at an angle of about 70° [53]. A double-notched mode II
specimen developed by Jones and Chisholm [56] also exhibited a very good mode II
patten; at both crack tips, but at low loads, vracks ran at approximately 70° to the machined
notches [53]. Although the double notched specimen exhibited proper behavior, a single-
notch specimen with simpler fabrication and testing consideration was preferred. Various
other specinen designs were investigated with poor results [53]. The principal failure
mode cf most of these specimens was a 70° crack moving into the tensile loaded side of the
notch, indicative of a mode I failure. These specimen designs are more fully described 1n

the literature [57-39].

The NASA Mode II LeRC specimen design (Figure 8) was tested using
photoelastic material which showed a symmetrical mode II pattern at the crack tip [53].
Ahiminum spccimené(téls/tcd/ f;.héd with the fracture path at or near 0° to the machined notch
[53].? An experimnental compliance calibration was performed on the specimen to provide
dispiacement and stress intensity coefficients over crack length to specimen width ratios
(a/W) of 0.5 to 0.9 {60]. Based on the data for larger specimens by Buzzard [60], a fourth
order polynomial relating the stress intensity coefficients f(a/W) to the a/W ratio was

derived for this study
Fla/W)= -2.367 + 20.7725(a/W) - 36.853(a/W)? + 23.7226(a/W)3 - 0.2010(a/W)*.

The above equation and the experimental data fall within a 5% or less error band (Figure

9). The calculated stress intensity coefficient may then be used to determine the mode 11
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siress intensity factor (K) in the usual way
Ky = L flaW)
"~ BVa '

The critical mode II stress intensity factor K. was calculated by inserting the
conditional load (Pg) into the above equation. Py was determined using either the 5%
secant offset load (Pg) or the maximum load (P, ,,) of the load-displacement curve,
which ever occurred first. As there are no ASTM guidelines in existence for mode II
fracture toughness testing, an assessment of the specimen size requirements could not be
made. However, the specimens were machined to the dimensions of the larger specimen
set forth by Buzzard et al. [53,60). In addition, the specimen thickness was maximized (B
= 10.16 mm) so that the fracture load was just below the maximum capacity of the

servohydraulic test machine. The specimen depth (W) was 69.85 mm.

The crack was formed by fatigue cracking (in tension) a machined notch to a depth
ranging from 45.72 t0 62.87 mm. Inidally, the precracking was attempted in shear, but the
crack propagated from the crack tip toward the tensile-loaded leg of the specimen at an
angle of about 70° to the notch. In order to avoid this problem, faiigue cracking was
performed in tension, which was conducted at the lowest practical stress level (< 20% of
the yield strength) to avoid influencing the fracture toughness test [52]). In addition,
precracking was performed in 'stroke control' which provides a decreasing load with

increasing crack opening dispiacement and crack length.

During the actual fracture test the specimens were loaded very slo vly resulting in an
average rate of increase of stress intensity of 45 MPavm min'!. All specimens were
fractured in a stress intensity rate range of 37 to 52 MPavm min'l, The crack length was
measured to the nearest 0.5% at the center of the crack front and midway between the

center and the end of the crack front on each side. The average of the three measurements
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was used as the crack length. The crack length of either surface was within 10% of the

average crack length. In addition, the P, /P ratios were greater than 1.10 P;. The

specimen thickness was greater than 5.5 times the calculated plane stress plastic zone size,

indicative of a nearly total plane strain condition. It cannot be said that these tests were

valid K,,. tests since no standard exists for this type of testing. However, with the
lic Yp

possible exception of specimen size requirements, these tests met the validity criteria for

mode [ fracture toughness tests as defined by ASTM E399 {51].
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QUANTITATIVE METALLOGRAPHY RESULTS

The second-phase particle type, size, and distmbution were determined as described
in the Experimental Procedure section of this study. Table II presents the size and
distribution data for each heat treatment. The normalizing temperature varied between
845°C and 1095°C, and two tempering temperatures were used: 200°C and 650°C. One
specimen received a 24 hour liquid nitrogen temperature (77°K) refrigeration treatment after

normalizing.

The particle count per unit area (N,) and per unit volume (Ny) along with the

geometric mean particle radius (R), volume fraction (f,), and interparticle spacing (A) are

given for each specimen in Table II. An important dimensionless ratio of the interparticle

spacing to the geometric mean radius (A/R) is also included in Table 1L

TABLE Il. SECOND-PHASE PARTICLE SIZE AND DISTRIBUTION

Nermalizing Tempering Number Msan Volume Number/ Interparticle AR

Temp. Temp. Per Area, Radius Fraction Volume, Spacing  Ratic
(<) £C) Namm?) Rem)  f, N, (mm3) A (nm)
845 200 3.26 38.8. 0.015 56.2 261 6.73
925 200 3.7 26.6% 0.008 37.5 217 8.16
1010 200 4.11 .40.5 0.021 70.8 242 5.98
1095 200 8.45 «25.2 0.017 178.5 178 7.06
845t 650 11.29 50.8 0.092 159.8 184 3.6
845% 650 11.36 52.0 0.096 163.0 183 35

t Datafrom SEM of polished and lightly etched surface.
$ Data from TEM of surface replica.

Two different imaging techniques were used to measure one of the specimen’s
particles, namely SEM of the polished and lightly etched surface and TEM of two-stage

surface replicas. Figures 10-14 illustrate typical electron micrographs of extraction replicas
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Figure 10. TEM photomicrograph of an extraction replica of VAR 4340 steel normalized at
845°C, austeniiized at 845°C and tempered at 200°C.
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Figure 11. TEM photomicrograph of an extraction replica of VAR 4340 steel normalized at
925°C, austenitized at 845°C and tempered at 200°C.
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Figure 12. TEM photomicrograph of an extraction replica of VAR 4340 steel normalized at
1010°C, austenitized at 845°C and tempered at 200°C.
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Figure 13. TEM photomicrograph of an extraction replica of VAR 4340 stesi nonmalized at
1095°C, austenitized at 845°C and tempered at 200°C.
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Figure i3, TEM photomicrograph cof an extraction replica of VAR 4340 steel normalized at
8457, austenitized at 845°C and tempered at 650°C.
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Figure 15. SEM photomicrograph of polished and etched surface of VAR 4340 steel
normalized at 845°C, austenitized at 845°C and tempered at 650°C.
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taken from each specimen. Figure 15 is an SEM photomicrograph of the specimen
tempered at 650°C for comparative purposes (see Figure 14). Log-normal distributions of
the particle diameters for each specimen are presented in Figures 16-20, It was observed

that a bimodal distribution prevails for all specimens.

Results of the statistical analysis of the geometric mean particle radius data as
outlined in detail in the Experimental Procedure section of this study are presented in Table
III. Error bands (t) used for the geometric mean particle radiu; were taken from the 95%
confidence limit (35%CL). The percent relative accuracies (%RA) less than or equal to

12 for the geometric mean particle radii are quite satisfactory for this analysis.

TABLE lll. STATISTICAL ANALYSIS OF MEAN PARTICLE RADII

Normalizing  Tempering Mean Standard  Number, 95% Percent
Temp. Temp. Radius, Deviation N Confidence Relative
_ (0 (°C) R (nm) s - Level Accuracy

845 200 38.8 20.5 4.6 10.6
925 200 26.6 125 7 9.5
1010 200 40.5 19.0 .4 .
1095 200 25.2 14.0 .2 12.
845 650 50.8 42.0 .8 10.

The error bands were carried through in the calculation of the interparticle spacing

(A) and the A/R ratio as presented in Table IV. Figure 21 prcsents the geometric mean
particle radius resuits as a function of the normalizing temperature (all given the same post
normalizing heat treatment). Note the minimum at 925°C and the maximum at 1010°C. As
will be demonstrated in the following section, the shear properties are influenced by these

differences.
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Figure 16. Log-normal distribution of the particle diameters from VAR 4340 steel
normalized at 845°C, austenitized at 845°C and tempered at 200°C. ‘The data is plotted as a
relative percentage frequency distribution using a natural logarithmic scale for particle
diameter.
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Figure 17. Log-normal distribution of the particle diameters from VAR 4340 steel
normalized at 925°C, austenitized at 845°C and tempered at 200°C. The data is plotted as a
relative percentage frequency distribution using a natural logarithmic scale for particle

diameter.
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Figure 18. Log-normal distribution of the particle diameters from VAR 4340 steel
normalized at 1010°C, austenitized at 845°C and tempered at 200°C. The data is plotted as a
relative percentage frequency distribution using a natural logarithmic scale for particle
diameter.
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Figure 19. Log-normal distribution of the particle diameters from VAR 4340 steel
normalized at 1095°C, austenitized at 845°C and ternpered at 200°C. The data is plotted as a
relative percentage frequency distribution using a natural logarithmic scale for particie
diameter.
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Figure 20. Log-normal distribution of the particle diameters from VAR 4340 steel
normalized at 845°C, austenitized at 845°C and tempered at 650°C. The data is plotted as a
relative percentage frequency distribution using a natural logarithmic scale for particle
diameter.
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Figure 21. Geometric mean particle radius results as a function of the normalizing
temperature.
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TABLE IV. ERROR BANDS FOR PARTICLE SIZE
AND DISTRIBUTION

Normalizing Tempering  Mean Radius, Volume Interparticte AR

Temp. {°C) Temp. (°C) R (nm) Fracton, f,  Spacing, A(nm) Ratio
845 200 388146 0.015+0.005 26110 6.7+0.4
925 200 26.6+27 0.008 £ 0.001 21747 8.210.4
1010 200 405134 0.021 £ 0.004 24217 6.0+0.3
1095 200 252132 0.017 £0.006 178111 7.110.6
845 650 508+58 0.092 +0.026 183+6 3.6£0.3

The material which was normalized at 1010°C exhibited large, interconnected
aluminum nitride particles following along the prior austenite grain boundaries. Surface
replicas revealed these AIN particles very nicely (Figure 22). The presence of aluminum
nitride particles was verified using a windowless energy dispersive x-ray spectrometer on
electropolished specimens in the SEM. The particles actually contained some oxygen, and

therefore are more precisely aluminum oxy-nitrides.

The structure of the material tempered at 650°C consists of spherical Fe,C carbide

particles uniformly dispersed in a ferrite matrix (see Figure 15). The high ductiity of such
a microstructure is directly related to the continuous ductile ferrite phase. A comparison
was made between the volume fraction (f,) of particles measured in this specimen and f,,
calculated through stoichiometry. Assuming all the carbon, initially interstitial atoms within

the martensitic matrix, goes into the formation of cementite particles when tempered at

650°C for two hours, then f can be calculated from stoichiometry and chemical
composition. Since the densities of cementite and ferrite are nearly equivalent (Pgq,c/Py =
0.98), it can be assumed that the weight percent cementite is equal to the volume percent
cementite (6% for this steel). By adding the volume fraction of second phase particles
initially present before tempering (1.5% for the specimen having the same normalizing and
austenitizing treatments), a total voiume fraction of second-phase particles is determined to

be 7.5 £ 0.5%. This result is within experimental error of the measured volume fraction
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Fi-ure 22. A TEM photomicrograph of a continuous string of aluminum nitride particles

ooserved in the prior austenite grain boundaries This steel was normalized at 1010°C, the
approximate grain coarsening temperature.
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for this specimen of 9.2 £ 2.6%. Thercfore, based on this comparison and the statistical
analysis, the author believes that within experimental uncertainty, the particle size and

distribution data are accurate.

The types of second phase particles have been investigated through energy
dispersive x-ray (EDX) spectroscopy of individual particles contained within the extraction
replicas. Several particles of all sizes were analyzed for each specimen. An energy
spectrum was collected for each particle, and numerical atomic percent data were obtained.
Elements with atomic numbers less than 11 (Na) could not be detected with the EDX
spectrometer due to the fact that their low energy x-rays cannot penetrate the beryllium
window. Therefore, three very important elements (carbon, nitrogen, and oxygen) went
undetected and are absent from the tabulated data in this study. Table V lists the average
uncorrected composition of the particles surveyed for each of the specimens. The relative
percent has been normalized to create a 100% total. Consequently, these relative amounts
do not reflect the quantity of the elements with atomic numbers less than 11. Particle to
particle chemical composition varied somewhat. The most significant observation that was

made, was the absence of aluminum in the smaller particles at 1010°C and above.

TABLE V. AVERAGE PARTICLE CHEMICAL COMPOSITIONS
(Relative Percent)*

Normalizing
Temp. (° Al Si P S Ca Fe Ni
845 8.0 31.2 - 14.8 21.4 23.4 1.2
925 5.2 11.9 3.4 47 13.4 60.2 1.2
1010 ¢t 83.1 4.0 - 2.0 4.0 6.8 0.1
1010 % - 53.8 7.2 - 16.3 21.6 1.1
1095 - 37.7 3.2 9.0 16.0 31.3 2.8

* Does not include efements with atumic numbers less than 11.
1 Large particles @ 1010°C
$Smali particles @ 1010°C
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Iron and nickel are alloying elements which are obvious particle constituents.
Calcium, sulfur and phosphorous are undesirable impurities present in all steels in varying
quantities. Generally, the lower the impurity content, the better the mechanical properties
and the higher the cost. Silicon and aluminum are introduced as deoxidizing agents during
the melting practice. In addition to forming oxides which become part of the slag, minute
quantities of these elements are dissolved into the melt, which have the desirable function
of controlling the austenite grain size. The calcium, aluminum, and silicon generally
combine with oxygen to form calcium alumino-silicates (CaO-Al,0,-8i0,) which appears
to be concentrated in the particles observed in this analysis. Wiistite (FeQO) is also
wrequently observed in these steels, and is assumed to be a constituent of the particles

¢ -aining relatively high concentrations of iron (see Table V).

In addition to forming aluminum oxide, aluminum also has a high affinity for
nitrogen creating aluminum nitride (AIN) particles. These particles help restrain austenite
grain growth below about 1000°C. Abrupt coarsening occurs in these fine grained steels
above this temperature due to the coarsening and dissolution of AIN particles which is
sometime. referred to as "secondary recrystallization.” On the contrary, coarse grained
steels are deoxidized with silicon, a practice which does not produce particle dispersions

effective in inhibiting austenite grain growth.

Gladman [61] developed a relationship between aluminum content and the grain
coarsening temperature in low carbon steels. The aluminum content of the steel employed
in this investigation is ().031 wt.% (see Table I) and a nitrogen content of 0.005 wt.%.
Using Figure 23 [61] and the aluminum content, 1010°C is found to be the approximate
grain coarsening temperature for this heat of steel. The reaction Al -+ N = AIN is reversible

and at high temperatures some of the AIN particles dissolve which permits grain

coarsening.
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Figure 23. Grain coarsening or secondary recrystallization temperature as a function of
aluminum content in low carbon steels. Data from Gladman [61]. Vertical arrow indicates
the aluminum content in the steel employed in the present study. The horizontal arrow
indicates the grain coarsening temperature.
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An austenite grain coarseaning study was performed in order to determine tne grain
growth response to temperature. The prior austenite grain size was determined using the
method outlined in ASTM E112-63 {62] for one hour solutionizing treatments over a
temperature range from 800°C to 1200°C at 25°C increments. Figure 24 illustrates this
relationship between austenite grain size and temperature for both VAR and air melted
(AM) 4340 steel. The AM 4340 data points were added for comparison purposes. Since
AM steel contains somewhat more impurities than VAR steels, by the nature of the refining
practice, the AM 4340 steel exhibited less grain growth over the temperature range. A note
of interest; this is the same heat of steel used in the recent study of microvoid nucleation by

Cowie et al. [2].

A significant observation may be made concerning Figure 24, that is a change in
slope occurs between 1000°C and 1050°C for the VAR 4340 steel. This indicates a change
in the grain growth kinetics and therefore suggests a coarsening and dissolution of
aluminum nitride particles around this temperature range. Grain growth is more rapid
above 1050°C and somewhat slower below 1000°C. Since this particular steel contains
both aluminum and silicon particles, the grain growth response can be considered a
combination of that which fine grained steels (aluminum deoxidized) and coarse grained

steels (silicon deoxidized) experience [63].

Nevertheless, evidence of aluminum particle coarsening in the prior austenite grain
boundaries (Figures 21, 22 and Table II), aluminum particle dissolution (Table V), and

accelerated grain growth (Figures 23 and 24) were observed at 1010°C. The combination

of these results clearly indicates an aluminum nitride particle dissolution and coarsening

responsible for grain coarsening above 1010°C. Processing at this temperature, aluminum

nitride embrittlement can occur, significantly reducing toughness and ductlity.
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Figure 24. Austenite grain size as a function of temperature for both VAR and AM 4340
steel. The slope change for the VAR steel at approximately 1000°C indicates aluminum
nitride dissolution and subsequent grain coarsening.
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R TEST RE

Results are presented for shear test experiments aimed at determining the following
effects on shear properties: normalizing temperature, cryogenic treatment, strain rate, and
hydrostatic pressure. As was demonstrated previously in Figure 21 and Table II, the
normalizing temperature affects the particle size and distribution, and since it was strongly
suggested that strain localization in UHS 4340 steel under simple shear loading conditions
is controlled at 100 nm scale second-phase particles [2], the effect of normalizing
temperature on shear properties was investigated. In addition, differences in amounts of
retained austenite may a30 influence the shear properties. Therefore, the effect of a post-
normalizing cryogenic refrigeration treatment on shear strain was studied. The effect of
hydrostatic pressure during shear testing was investigated since it was hypothesized that the
pressure would delay microvoid nucleation and therefore, postpone strain localization.
Verification of the effect of strain rate discussed in the literature [2,10,11] was also

periormed.
Effect of Normalizing Temperature

A test of the influence of second-phase particles on shear localization can be made
by raising the normalizing ttmperature to dissolve these particles. Gore et al. [{64] has
demonstrated that raising the austenitizing temperature in the same heat of 4340 steel
examined in this study, dissolves the second-phase particles from a volume fraction of
0.44% at 870°C to 0.05% at 1200°C. Such a change in the amount of undissolved
dispersions can be expected to significautly alter the critical strain for microvoid nucleation
softening. This should be most pronounced in Stage I tempered material where the
ultrafine e—carbides precipitated during terpering should not contribute to microvoid

nucieation, and the iaflueace of undissolved particles would thus be greatest. An
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investigation [64] into the effect of austenitizing temperature in the range of 870°C to
1200°C on the instability strain in the VAR 4340 steel tempered at 200°C has shown a slight
monotonic decrease with increasing austenitizing temperature. The effect has been
attributed to a combination of crystal-plasticity-based strain softening mechanisms which
may be promoted by grain coarsening {64]. As mentioned in the previous section and
itlustrated in Figure 24, VAR 4340 steel develops significant grain coarsening over the
temperature range investigated by Gore er al. [64], especially at 1200°C where the volume

fracdon of second-phase particles is a minute 0.05%.

Since it has been shown that the prior austenite grain size affects the shear
instability swtrain {64], it was proposed that a study of the influence of particle size and
distribution on the shear properties be performed at a constant austenite grain size. This
was accomplished by varying the normalizing temperature from 845°C to 1100°C and then
austenitizing for a short time (15 min) at a single low temperature (845°C). The one hour
normalizing treatment determines the size and distribution of the second-phase particles.
Although some particles are nucleated at the low temperature austenitizing treatment, the
iendency for particle growth is limited by both the short time (15 min) exposure and low
ausienitizing temperature, thereby lowering the total amount of diffusion. The final cycle
above the a3 temperature controls the prior austenite grain size. Since all specimens
received the same final solutionizing treatment, the grain sizes were approximately equal as
shown in Appendix A. The ASTM prior austenite grain size number for each of the test
conditions ranged from 11.5 to 12.5. These ASTM grain size numbers are equivalent to

‘calculated’ mean grain diameters of 66.7 um and 47.2 pm respectively [62].

Shear deformation tests were performed. The data generated from each test

included plasuc shear stress-strain records (Figure 6), shear strain profiles (Figure 7), and

a mean instability strain (y,). Shear stress-strain curves for the four normalizing




temperatures are presented in Figure 25. The points on these curves correspond to their
respective peak stresses and instability strains. These instability strains were plotted as a

function of the normalizing temperature 1n Figure 26. Notice that the maxima and minima

of ¥; correspond to the minima and maxima of the geometric mean particle radius (R)
respectively (see Figures 21 and 26). However, a non-linear relationship exists between ¥,
and R as illustrated in Figure 27. A better relationship exists between ¥, and the volume
fraction (f,) (Figure 28), but gives no information concemning the spatial relationships of
the particles. Therefore, the best method for graphically describing ¥, in terms of the
particle size and distributic .s through use of the dimensionless term; the interparticle
spacing to geometric mean particle radius {A/R) ratio introduced by Argon et al. [32]. A
good fit of the experimental data for y, versus A/R is presented in Figure 29. Linear
regression was used to fit a straight line through the data, which also passed through the
point =0, A/R =2. The physical significance of this point being zero strain localization
resistance while the particles are in intimate contact with one another. The observed

increase in ¥, with increasing A/R gives support to the theory that microvoid nucleation

softening is responsible for flow localization in this material.

The fact that the interparticle spacing is important to shear instability, is indicative of
particle stress field interaction as defined by Argon et al. [32), and analyzed by Tracey and
Perrone [65] through an elastic-plastic finite element investigation of wae three dimensional
strain fizlds near pairs of interacting particles. The interactions 2rhance the interfacial
stress and hasten void nucleation [65]. Given the same volume fraction (1,e the same A/R
ratio), small, evenly distributed particles permit larger strains prior to void nucleation.
Conversely, large or unevenly distnbuted particles nucleate voids at relatively small strains,

and ultimately degrade the material's ductility [33].
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Figure 25. Shear stress-strain curves for four differently normalized material. The points
on the curves correspond to their respective peaa stresses and instability strains.
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Figure 26. Instability strains plotted as a function of normalizing temperature. Notice that

the maxima and winima of Y; correspond to the minima and maxima of the mean particle
radius R respectively (Compare with Figure 21).
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Figure 27. A poor relationship exists between shear instability strain and the geometric
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Figure 28. A linear relationship holds true between shear instability strain and volume
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Figure 29. Linear regression was employed to fit a straight line through the experimental
data of instability strain and A/R dimensionless spatial relationship term.
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The steel which was normalized at 101G°C, near the secondary recrystallization
temperature, exhibited the poorest ductility. As detailed previously in the Quantitative
Metallography Results section, a continuous string of coarsened aluminum nitride particles
were observed in the prior austenite grain boundaries in this material. Although, the
intergranular precipitation of aluminum nitrides is most closely tied to intergranular fracture
in cast steels, aluminum nitride particles have also been observed in wrought 4340 steel by

Materkowski [66].
Effect of Cryogenic Treatment

It was theorized that normalizing at different temperature would produce retained
austenite contents; higher temperatures yielding more retained austenite. Furthermore, it
was thought that these differences in retained austenite could potentially affect the shear
instability strain by a transformation induced plasticity effect. In order to separate the

effects of particles from the effect of retained austenite, the following study was performed.

The instability strains and retained austenite contents were compared for the
specimens normalized at 845°C, 1095°C, and for a specimen given a post-normalization
(1095°C) liquid nitrogen refrigeration treatment (77°K) for 24 hours. This was performed
in order to transform some of the retained austenite to martensite. The retained austenite
contents were measured using x-ray diffraction as outlined in Appendix B. Table VI
summarizes the retained austenite measurements along with the shear instability strains.
Within experimental error, all three specimens contained equivalent quantities of retained
austenite (i.e., 3%). This result indicates that the last cycle above the &3 temperature

(austenitizing treatment in this case) controls the retained austenite content.




TABLE VI. RETAINED AUSTENITE AND SHEAR INSTABILITY

Normalizing Liquid Austenitizing Tempering Retained  Instability

Temp. Nitrogen Temp. Temp. Austenite Strain
(°C) Refrig. (77°K) (°C) °C) (Vol. %) Yi
845 0 845 200 2.911.2 0.28
1095 24 hours 845 200 3.0+0.6 0.32
1095 0 845 200 3.210.8 0.33

Even though the retained austenite contents were essentially equivalent, the
instability strains for the three materials differed. The two materials normalized at 1095°C
have shear stress-strain curves (Figure 30) and strains which are essentially equivalent.
The material normalized at 845°C has a lower instability strain than the materials normalized
at 1095°C. These results indicate that the instability strain is a stronger function of the
normalizing temperature, and particle size and distribution, than the retained austenite

contents.

Effect of Pressure

In order to verify the pressure dependent behavior previously reported in lower
strength steels (11] and in UHS 4340 steels {2], shear specimens were tested quasi-
statically with a superimposed axial compressive load. Finite element calculations indicate
that the stress component arising from this axial load reasonably approximates uniaxial

stress once plastic shear deformation is underway {50].

During testing, a mean axial compressive stress equal to 1/4 the material's tensile
yield stress was used. The small deviatoric stress associated with the axial stress was not

accounted for in the stress-strain curves. However, it was calculated to be less than 1% of

the total effective stress during plastic deformation.
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Figure 30. Shear stress-strain curves for two materials normalized at 1095°C, austenitized
at 845°C and tempered at 200°C. One of the specimens was given a 24 hour liquid nitrogen
temperature refrigeration treatment after normalizing. There is little effect of this cryogenic
refrigeration treatment.




The stress-strain results clearly show pressure dependent behavior for both R_ 54
(Figure 31) and R 29 (Figure 32). As the axial stress is increased from 0 to 1/3 the yield
stress, the instability stain is increased for both hardness levels as illustrated in Figures 33
and 34. Air melted instability strain data are included in Figures 33 and 34 from reference
[2]. In the case of the lower strength (R, 29) material, the VAR 4340 prodaced
significantly higher instability strains than the AM 4340, probably owing to the lower
inclusion content of VAR steels. For the UHS 4340 steel (R, 54), the instability strains for

both AM and VAR steels were approximately equivalent.

The stress-strain curves (Figures 31 and 32) for these two hardness levels show
greater ultimate shear strengths with an applied compressive axial load normal to the shear
plane. This result indicates that a hydrostatic compressive stress field produced by the axial
load must be overcome by the shear stress in order to attain particle decohesion, and

ultimately microvoid nucleation softening.

Summarizing, the pressure dependent behavior of the instability strain can be
attributed to the stress required to debond the second-phase particles from the matrix and
form microvoids. This interpretation is supported by the recent analysis by Fleck er al.

[67] on microvoid nucleation softening as a basis for shear instability.
Effect of Strain Rate

Shear tests were performed under dynamic conditions; shear strain rate
approximately equal to 10*s-!. Both the low hardness (650°C temper) and high hardness
(200°C temper) materials were tested and compared with their counterparts tesied quasi-
statically at 103 s'l. Figures 35 and 36 illustrate the stress-strain behavior for these two
materials with strain rates seven orders of magnitude apart. Clearly, from the stress-strain

curves and from the strain profile measurements presented in Table VI, it can bc observed
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Figure 31. Shear stress-strain curves for the same material (normalized at 845°C,
austenitized at 845°C and tempered at 200°C) tested with and without a superimposed load
equal t0 1/4 the tensile vield stress normal to the shear plane. The instability stiain is
favorably affected by the resulting hydrostatic compression.
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Figure 32. Shear stress-strain curves for the same material (normalized at 845°C,
austenitized at 845°C and tempered at 650°C) tested with and without a superimposed load
equal to 1/4 the tensile yield stress normal to the shear plane. The instability strain is
favorably affected by the resulting hydrostatic compression.
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Figure 33. Instability strain plotted as a function of superimposed pressure normal to the
shear plane for the 200°C tempered material. Air melted material data from reference [2].
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Figure 34. Instability strain plotted s a function of superimposed pressure normal to the
shear plane for the 650°C tempered matenal. Air melted matenal data from reference {2).
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Figure 35, Shear stress-strain curves for the same material (normaiized at 845°C,
austenitized at 845°C and tempered at 200°C) tested at high and low steain rates. There was
iittle effece of strain rate on the instability strair.
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Figure 36. Shear stress-strain curves for the same material (normalized at 845°C,
austenitized at 845°C and tempered at 650°C) tested at high and low strain rates. Higher
strain rates produced somewhat lower instability straias for this lower strength material.
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that strain rate has little effect on the instability strain for the UHS material (R; 52). For
the R, 29 material, the instability strain decreased with increasing strain rate. The flow
stress for both materials increased with strain rate, and the eftect at constant strain can be

approximated by
6=CemM

where o is the flow suress, C is a strength constant, € is strain rate, and m is the strain rate
sensitivity of the flow stress. Assuming von Mises yield criteria holds, i.e., 6 =V3 1

and £=+34, then
t=Cem

wlhere 1 is the shear flow stress, and ¥ is the shear strain rate. The magnitudes of the
strain rate sensitivities for both muteria™ e »resented in Table VII, and are low (< 0.05)

a- expected for metals at oG t mperatare [65).

TABLE VIi. EFFECT OF STRAIN RATE

Normmalizing Austenitizing Tempering Strain instability Strain Rale
Temp. Temp. Temp. Rate, Strain, Sensitivity,
(°C) (°C) C) Yis™) v m
845 845 200 10-3 0.28 0.036
845 845 200 104 0.30 0.036
845 845 650 10-3 2.33 0.040
845 845 650 104 v.8¢ 0.040

For the ultrahigh streng:y steel (200°C temper), the instability strain was not

affccted by the ncarly 1009 adiabatic condition (y = 10% sec’!). This fact implies that there
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is little or no effect of deformation heating produced thermal softening influencing
instability, the point at which shear localization or "adiabatic shear” begins. Shear bands
which form during strain localization are the thin white etched bands often mentioned in the
literature [4-6]. It is believed that shear bands are the result of a combination of intense
strain and a thermal effect associated with high strain rate deformation. Thermal softening
only becomes the dominant softening mechanism once strain localization has occurred.
The results further suggest that there must be some sort of microstructural, destabilizing
influence responsible for producing the instability, which is further investigated in the

following section on microvoid nucleation at second phase-particles.
Microvoid Observations

The fine 100 nm scale of microvoid formation makes microscopy observaiions
difficult compared to the more familiar problem of >100 nm scale ‘primary’ void formation
which has been well studied by light microscopy. A study was undertaken to photograph
these fine scale microvoids. Transmission electron microscopy was performed on thin foil
specimens of both straine.d- and unstrained UHS 4340 steel. The microstructure of the
unstrained material shown in Figure 37 consists of a martensitic lath matrix with a fine
dispersion of e-carbides. In addition, there are submicron sized second-phase particles
which act as grain refiners. These second phase particles have been identified in the
Quantitative Metallography section of this study as (Fe, Si, Ca, and Al) oxides, nitrides and
carbides (see Table V).

During straining, the strain fields of these particles interact {65] leading to
cooperative microvoid nucleation. Figure 38 presents a TEM photomicrograph of strained
material illustrating a pair of particles linked by microvoids. The photograph was taken in a
rather thick region o: the thin foil, since the panticles would have fallen out if additional

thinning were performed. This thin foil specimen was removed from the gauge section of a
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Figure 37. TEM photomicrograph of the microstructure of unstrained 4340 steel (Rc 52)
consists of a heavily dislocated martensitic lath matrix with a dispersion of submicron sized
second-phase particles.
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Figure 38. TEM photomicrograph of microvoid nucleation around a pair of second-phase
particles.
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linear shear specimen which was strained to instability. The micrograph was taken in the
region which received only uniform deformation which ceased straining once instability
had occurred. Many particles were observed to exhibit this type of behavior. The
directions of the void growth appear aligned in the direction of the principal stress (01).
Shear cracks linked void pairs predominantly along the direction of the imposed shear

stress direction, approximately 45° to (o,). These experimental results are consistent with

the analytical calculations of interacting void pairs by Tracey and Perrone [65].

Although specimen preparation by electropolishing may have enlarged the voids, no
such voids were observed in idcntically prepared foils taken from the unconstrained
specimen. Additionally, the fracture surface of a shear specimen tested to fracture
contained microvoids having a mean diameter approximately equal to the interparticle
spacing, indicative of a microvoid sheet type fracture mechanism, as illustrated in Figure
39. It can be concluded that the voids observed in the strained thin foil specimens were

genuinely produced by the plastic deformation.

An earlier study [2] on high strength AM 4340 steel showed SEM photographs
taken from interrupted shear tests. Microvoid profusion was observed at peak stress  The
abrupt appearavi of microvoids supports a nucleation-controlled rather than growth-

controlled softzning mechanism as described in the literature [67].

Chi [69] experimentally measured the microvoid nucleation strains in the same heat
of steel investigated in this study. Measurements were taken of the local strains at various
points along the axes of notched tensile specimens. The specimens were then cross-
sectioned and the void area fraction (N, was measured along the length of the specimen
using an SEM. Chi states that "voids were observed to initiate at submicron carbide

particles, and accordingly, the percentage of submicron particles associated with voids was
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Figure 39. SEM f{ractograph of a shear specimen tested to failure. The specimen failed by a
microvoid sheet type fracture mechanism. The void diameters scale with the interparticle
spacing.




measured" [69]. N, was quantitatively related to the strain measurements. The void

nucleation strain (g,) was taken as the greatest strain (€) having no voids.

Chi's study [69] employed the identical material, austenitizing treatment, quenching
medium, and tempering treatment. However, the normalization treaiment was performed
at 900°C. By interpolating the instability strain (¥, at 900°C from Figure 26 (normalizing
temperaturs versus instability strain), v, equals 0.328, which can be assumed to be the void
nucleation shear strain. Assuming von Mises yield criteria holds true, i.e., Y= V3¢, then
€,=0.17 measured by Chi [69] can be converted to y; = 0.294. This results in a relative
difference of only 10% between Chi's instability strain (y, =0.294) and this study's

instability strain (y; =0.328). These results compare very nicely considering the

completely different experimental approaches.
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Results of standard Charpy tests performed at both room temperature and at -40°C
for five different normalizing temperatures are presented in Figure 40. As could be
predicted by the shear instability results as a function of normalizing temperature, the blunt-
notch toughness decreases dramatically at approximately 1000°C, the approximate grain
coarsening temperature for this matenal. Likewise, the sharp-crack fracture toughness
(K,o) results, again plotted as a function of normalizing temperature, exhibited the same
behavior (Figure 41). The drop in K| at 1000°C is precipitous. As previously reported,
this material experiences aluminum nitride embrittlement around this temperature which is

reflected in both K, and Charpy test data.

The square root of the second-phase particle spatial relationship term (\/—7\7?_)
multiplied by the square root of the interparticle spacing (\j‘z herein defined as the critical
distance (A/VR), displayed a relatively good linear relationship with toughness (Kie)
illustrated in Figure 42. The K, - AV R linear relationship can be extrapolaied back to zero

toughness (K= 0) at zero particle spacing (\/VR = 0) making excellent physical sense.

Mode I Fraciure Toughness Model

Inspired by the K| - MR (Figure 42) relationship, a simple fracture toughness
raodel was derived. Employing the classic work by Hutchinson [70], Rice and Rosengren
[71] on a tensile crack in a power-law hardening matenal
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Figure 40. Charpy Vee-notch impact toughness plotted as a function of normalizing
iemperature. A minimum Charpy energy exists at approximately 1000°C, the aluminum

nitride embrittlement temperature. All specimens austeritized at 845°C and tempered at
200°C.
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Figure 41. Sharp-notch fracture toughness K¢ plotted as a function of normalizing
temperature. A minimum in toughness exists at approximately 1000°C, the aluminum
nitride embrittlement temperature. All specimens austenitized at 845°C and tempered at
200°C.
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Figure 42. Critical stress intensity factor Kjc plotted as a function of the critical particle
distance A/VR .
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where o is stress, € is stvain, I is the distance from the crack tip, and J is the integrated
release of crack driving energy. When linear elastic fracture mechanics (1LEFM) applies, J

=G, and

G
2n r

gE=

Tetelman and McEvily [72] first introduced the concept that critical mode I crack

extension force (G.) is reached when the critical strain (£*) is attained some critical

distance (r*) from the crack tip, schematically illustrated in Figure 43. Also, oy is defined

as the microvoid nucleation stress. Toughness can then be related to these critical

parameters
G‘c =2rre" ON

Upon conversion of Gy, to K|, the LEFM plane strain relationship can be employed

= | —l—
K= 1-v2)

where E is Young's Modulus of elasticity and v is Poisson's ratio. Ky, becomes

2rrr e’ oy E
Kie = 1-v2

For void nucleation to occur, it is assumed that the critical distance (r*) is equal to the

interparticle distance (A) multiplied by the /R dimensionless spatial parameter. This A/R
term is included as a critical distance multiplier because particle interactions enhance the
interfacial stress and hasten particle-matrix decohesion [33]. The critical stress to void

nucleation varies with the size and distribution of particles. Larger values of /R help to

delay particle interaction, promoting greater toughness. Consequently, the number of
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Distance From Crack Tip, r

Figure 43. Schematic representation of the strain field in front of a sharp crock under a
tensile load. A critical strain €* is found to exist a critical distance r* from the crack tip.
From reference (72].
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nucleated voids is a direct function of the A/R term. Fracture toughness can now be written

2n (A ]
K|c='\/—g_zz)(ﬁ)xe c’PNE

Further, the critical strain (€*) can be assumed to occur at the onset of void nucleation or at

as

shear instability

E. = \'/?‘Yl

The void nucleation stress is derived within the framework for progressively cavitating

solids introduced by Gurson [73,74]. Vuid nucieation was shown to be strongly

dependent on the hydrostatic stress (o) as well as the effective stress (g). Needleman
{751 proposed that nucleation stress (0y) can be thought of in terms of a combination of

O’HandOE
N "GE +C0H

where € is the hydrostatic coefficient. In one set of Needleman's calculations, ¢ was
chosen so that the average nucleation stress (oN‘, was the same for all cases investigated.
In the present study, an average C was arrived at using the experiraental data. This average
¢ is 0.5, which is phys.cally reasonable. Needleman [75] states that “values of € less than
unity in Oy = Og+C0o.; can be thought of as due in part 1o the remote hydrostatic siress
being ‘converted’ to local shearing stresses around the inclusion, the magnitude of which
are limited by the work hardening capacity of the material.”" In Needleman's [75]

concluding remarks, he states that “this critical nucleation stress depends lirearly on the

hydrostatic tension, hut with a coefficienr that is less than unity.”




In the case of the steel normalized a1 1010°C, which suffers from aluminum nitride
embrittlement, a different hydrostatic coefficient was used. Brittle interfaces associated
with larger or poorly bonded particles are characterized by a more strongly hydrostatic
stress dependent nucleation stress [75). The value of € for this material is unity reflective
of its brittle particle intertaces [75). For the lower strength steel tempered at 650°C, the
cementite responsible for microvoid nucleation is in the form of large particles that are
poorly bonded with the matrix. Consequently, ¢ is also equal to unity for this material.

The calculated fracture toughness (K= 94 MPaym) for this lower strength steel is nearly

equal to fracture toughness measured by Hickey and Thornas using the same heat of steel

(K,c= 99 MPavm) (76].

The final form of the fracture toughness equation relating the critical mode I stress

intensity factor 10 experimentally derived parameters is written

2n A
Kk‘-v (1-U2) (ﬁ)lE,E(OE-O-COH)

For pure mode I crack extension, g and 6, aic ~qual to each other (see Appendix C).
Table VIII presents the experimental data used in the calculation of K., The predicted K\,
value from the above equation is compared with experimentally determined K, value in

Figure 44 and Table IX.

Excellent agrecment exists between the measured and calculated K, values. It can
be concluded that the derived relationship between fracture toughness and its material
parameters is valid for these particular steels and this fracture mode. It is believed that this

maodel is valid for other materials that fail by a microvoid nucleation controlled shear

instability type failure mechanism.
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Figure 44. Fracture toughness model verification curve. The calculated K¢ from the
inodel is plotted versus the experimentaily measured Kic. The line represents an ideal
relationship. Deviation from the ideal is 4% or less.
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TABLE VIIl. FRACTURE TOUGHNESS MODEL VERIFICATION

Normalizing Tempering  Interparticle  A/R Instability Eftective  Hydrostatic
Temp. Temp. Spacing, Ratio Strain Stress, Coefficient
°C) C) A (hm) - =3y, o (MPa) c
845 200 261 6.7 0.485 2120 0.5
925 200 217 8.2 0.606 2127 0.5
1010 200 242 6.0 0.381 2075 1.0
1095 200 178 7.1 0.572 2179 0.5
845 650 183 3.6 4.040 1195 1.0
v=03 and E = 206850 MPa
TABLE IX. FRACTURE TOUGHNESS COMPARISON
Normalizing Tempering Caiculated Measured KiccKieM
Temp. (°C) Temp. (°C) KooMPaVmy Ky (MPavm)  Error (A %)
845 200 62.1 61.8 -0.5
925 200 70.1 69.1 -1.4
1010 200 57.3 56.4 -1.6
10985 200 58.1 58.1 0.0
845 650 95.3 99.0¢ +3.9

¥ From Hickey and Thomas [76]

Mode I - Mode II Fracture Toughness Comparisons

Mode 1I (shear) fracture toughness tests were performed as described in the
Experimental Procedure section of this study. Two tests were performed for each material. .
The mean K .'s as well as the standard deviations are reported in Table X. The squarc
root of the second-phase particle spatial relationship term (\[ﬁ) multiplied by the square
root of the interparticle spacing (‘\j—l-), defined as the critical distance (A/¥R), displayed a

relatively good linear relationship with toughness (K, ), as illustrated in Figure 45. The

Kye - MVR  linear relationship can be extrapolated back to zero toughness (K,,.= 0) at

lic

se70 particle spacing (A/VR = 0) making excellent physical sense.
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Figure 45. Critical stress intensity factor Kjic plotted as a function of the critical particle
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The mode I critical stress intensity factors are much greater than those for mode I
(tension) by an average factor of about 2.5 for the UHS steels. This helps explain why the
crack prefers to propagate under a tensile stress rather than shear stress even when the
applied loading configuration is shear. Figure 46 shows a crack which ran 70° off the
initial crack plane toward the tensile leg of the shear fracture specimen. Constraint is
critical when fracturing in mode II. For the lower strength material {650°C temper), the

KK, ratio is unity, owiny to the large amount of void growtn and coalescence during

mode I fracture, raising the apparent fracture toughness.

TABLE X. MODE Il (SHEAR) FRACTURE TOUGHNESS

Normalizing Tempering Kite Kie/Kic
Temp. (°C) Temp. (°C) (MPa ym) Ratio
845 200 156.8 1.7 25
925 200 158.6 + 2.7 2.3
1010 200 139.0+ 5.7 2.5
1095 200 1424 +5.0 2.5
845 650 95522 1.0

A fractographic analysis was performed on modes I and II fracture suriaces. In
general, the mode Il fracture mechanism was microvoid sheeting, whereas the mode |
fracture mechanism was also microvoid sheeting but with some void growth at the larger
particles. Some intergranular cleavage was also observed on the mode I fracture surfaces
which would tend to lower K,.. Figures 47 through 50 compare the fracture morphologies
for each material and fracture mode. From the mode Il fracture surfaces, it was observed
that the microvoid diameters scale with the interparticle spacing. Specimens with large

interparticle spacings have large microvoid diameters, and the contrary is also true.

92




e P S e

g

Figure 46. A mode il fracture specimen which failed by a crack running 70° off the initial
crack plane toward the tensile leg of the specimen.
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Figure 47. SEM photographs of the fracture surfaces created by mode I and mode 11
fracture specimens. The material is VAR 4340 steel normalized at 845°C, austenitized at
845°C and tempered a 200°C.
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Figure 48. SEM photographs of the fracture surfaces created by mode I and mode I’

fracture specimens. The material is VAR 4340 steel normalized at 925°C, austenitized at
845°C and tempered at 200°C.
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Figure 50. SEM photographs of the fracture surfaces created by mode 1 and mode 11
fracture specimens. The material i1s VAR 4340 steel normalized at 1095°C. anstenitized at
845°Cand tempered at 200°C.
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There existed only small dimples on the mode II fracture snrfaces due to a

microvoid nucleation fracture mechanism. The mode II stress state consists of a high
hydrostatic compression in addition to the shear stress. This pressure permits the
development of large strains before the void nucleation event. Consequently, void
nucleation at all particles occurs virtually simultaneously, resulting in rapid plastic failure

by a microvoid sheeting fracture mechanism.

Whereas, there existed a mixed distribution of dimple sizes on the mode 1 fracture
surfaces due to a void growth fracture mechanism. The hydrostatic tension stress field
favors early void nucleation at the relatively large particles with weak matrix-particle
interfaces. Subsequent growth and coalescence of these voids are favored with this tensile

stress state.

A possible solution for the large K,,/K|. ratio and fracture su~face morphology
discrepancies may be found in the first approximation calculations o1 the crack tip stress
fields cetailed in Appendix C. The normalization of the hydrostatic stresses by their
respective effective stresses (0y4/0g) provides a reasonable solution to the discrepancy as
illustrated in Figure 51. These stress calculations clearly demonstrate a high hydrostatic
tension field exists just in front (0°) of the crack tip during mode I testing. However,
during mode II testing, zero hydrostatic tension exists just in front (0°) of he crack tip.
Needleman {75] in a series of calculations, demonstrated that high 6p/cg ratios produce
lower void nucleation strains. He concluded that the critical nucleation stress is inversely
dependent on the hydrostatic tension, but with a coefficient that is less than or equal to

unity.
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Figure 51. Comparison of normalized hydrostatic stresses around a crack tip for fracture

modes I and I}, The hydrostatic stress Gy is normalized by the effective stress . Mode |
fracture exhibits a high hydrostatic tension just in front (0°) of the crack tip. Whereas,
mode 1I exhibits zero hydrostatic tension at 0°.

99




The lower strength material (650°C temper) was also fractured in shear. The
fracture surface of this specimen contained greatly elongated microvoids indicative of
greater matrix strain hardening (Figure 52). In the same manner as the UHS steel, The
lower strength steel's microvoid diameters scale with the interparticle spacing. The
K,i/K|c ratio equal to unity for this material indicates that there is little effect of hydrostatic
stress on void nucleation around cementite particles, as there was relatively little influence

of axial pressure on shear instability strain (See Figure 34).

A process zone was observed within the larger mode Il plastic zone (Figures 53-
56). This process zone extended only a very small fraction of the way into the plastic zone.
The fracture morphology was somewhat different than in the rest of the plastic zone
(compare Figures 53-56 to Figures 47-50). This fracture surface is a combination of
dimple rupture and a structure with a wave-like appearance attributed to adiabatic shear
which has been called a "knobbly” structure by Bedford er al. {6]. It is speculated that
these fracture surfaces are the result of microvoid sheeting in a region of extreme plastic
strain resulting from a stress field of intense effective stress combined with high hydrostatic

pressure.
Mede II . ucture Toughness Model

A similar analytical model was derived for mode II, relating the material parameters
¢ ihe critical stress intensity factor. The form of the fracture toughness equation relating
the fracture toughness (K ) to experimentally derived parameters is identical to that of
mode I. However, the stress states are totally different. The effective stress for mode Il is

1.73 times the mode 1 effective stress, while the mode I1 hydrostatic stress is less than or

equal to zero for all crack plane orientations (see Appendix C).




Figure 52. SEM fractograph of the fracture surface created by a Ky specimen. The
matcrial is VAR 4340 stcel normalized at 845°C, austenitized at 845°C and tempered at
650°C.
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Figure 53. SEM fractograph of the fracture surface created by the Ky process zone

immediately in front of the fatigue precrack. The material is VAR 4340 steel normalized at
845°C, austenitized at 845°C und tempered at 200°C.
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Figure 54, SEM fractograph of the fracture surface created by the K¢ process zone
immediately in front of the fatigue precrack. The material is VAR 4340 steel normalized at
925°C, austenitized at 845°C and tempered at 200°C.
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Figure 55. SEM fractograph of the fracture surface created by the Kjc process zone
immediately in front of the fatigue precrack. The material is VAR 4340 steel normalized at

1010°C, austenitized at 845°C and tempered at 200°C.
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Figure 56. SEM fractograph of the fracture surface created by the Ky process zone
immediately in front of the fatigue precrack. The material is VAR 4340 steel normalized at
1095°C, austenitized at 845°C and tempered at 200°C.
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After calculating the mode II fracture toughness using the appropriate parameters in
the model, it was found that these calculated K).'s fell short of the actual experimentally
determined values by a factor of approximately 2.3. A reasonable explanation for this
discrepancy lies in the effect of pressurz on shear instatility. Figures 33 and 34 illustrate

the dependence of shear instability on pressure.

For the case of the ulirahigh strength material (Figure 33), an axial stress equal t0
1/3 the tensile yield stress increases the instability strain by a factor of approximately 4. In
addition, this axial pressure converts to a much lower hydrostatic compressive stress; i.e..
oy = 1/9 the tensile yield strength. These low hydrostatic compressive stresses are
operative very close to the 0° crack plane orientation (See Appendix C). Consequently, the
shear instability strain measurements from the zero pressure shear tests cannot be used in
the mode II fracture toughness model. In order for the model to accurately predict K.,
instability strain values from biaxially loaded (shear + axial pressure) test specimens must
be substituted for the ¥;'s measured from shear tests employing no applied axial stress.
Experimentally measured K.'s would be approximately equivalent to model predictions
of Ky c's using ¥j's measured under a hydrostatic stress approximately equal to 14% of the

material's tensile yield stress.
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CONCLUSIONS

1. Shear instability strain (y) directly correlated with second-phase particles size and
distribution through a dimensioniess term (A/R) relating the interparticle spacing (A) to the

geometric mean particle radius (R).

2. Aluminum nitride and cementite particles were the most embrittling particles observed,

responsible for low fracture toughness and loss of ductility.

3. Shear localization is produced by a microvoid nucleation softening mechanism.

Microvoids nucleate at sub-micron scale second-phase particles.

4. The pressure dependent behavior of shear instability provides evidence of a microvoid

nucleation softening mechanism.

5. There is little effect of deformaton heating produced thermal softening influencing the

instability strain for the UHS steel.

6. Both mode I (K\.) and mode II (K};.) critical stress intensity factors directly correlate

with the critical particle distance (A/VR).

-’:,‘-

7. A fracture toughness model was dcﬁvcd;ﬁrEt principles. Excellent correlation exists
between measured and calculated critical mode I stress intensity factors (K,.) for the
different steels investigated in this study. Measured and calculated K;;.'s did not correlate
very well due to the influence of hydrostatic compression on the shear instability strain.
The model result is described in detail in the Fracture - Shear Instability Correlations

section. For emphasis, the end product is once again given

2 A
Kc='\/ (1-22) (ﬁ) A€ E (og+cCoy)
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8. Mode II (shear) critical stress intensity factors (K ) were 2.5 times greater than mode
I (tension) critical stress intensity factors (K.). This discrepancy is probably due to the
differing stress states. Mode I crack tips experience high hydrostatic tension, whereas
mode II crack tips have zero or negative hydrostatic tension, which affects the void

nucleation stress.
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APPENDIX

Appendix A - Prior Austenite Grain Size Determination

Calculation of the grain sizes was performed using the line intercept method. These
data were then converted into the appropriate ASTM grain size number. The average grain ¢

diameter was calculated as follows:

3. (length of lines)
D=

Y. (number of grain boundary intersections)

where D is the measured average grain diameter at the magnification of the photograph. To

convert to the ASTM grain size number, the following relations were employed

n = 2N
_ logn
or N= Tog 2 +1

where n is the number of grains per square inch, and N iS defined as the ASTM grain size

number.

Table A presents the grain size measurement data. The ASTM grain size averages
12.1 £ 0.5 for the four normalizing temperatures. It can be concluded that the final
austenitizing treatment at 845°C for 15 min determined the final austenite size. There is
however a slight increase in grain size with increasing normalizing temperature, illustrated
in Figures A1-Ad4, due to the dissolution of some of the grain refining second 't se

particles.
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Figure Al. Photomicrograph of the prior austenite grain boundaries (normalized at 845°C).
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Figure A2. Photomicrograph of the prior austenite grain boundaries (normalized at 925°C).
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Figure A3. Photomicrograph of the prior austenite grain boundaries (normalized at
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Figur: A4. Photomicrograpk of the prior austenite grain boundaries (normalized at
1095°C).




TABLE A. AUSTENITE GRAIN SIZE

Normalizing Measured Diam. ASTM
Temp. (°C) at 500X (inch) Grain Size, N
845 0.107 12.5
925 0.110 12.4
1010 0.131 11.9
1095 0.150 11.5

Appendix B - Retained Austenite Determination

Retained austenite measurements were made on three specimens using the method
described by Cullity* . A Cu Kg radiation x-ray diffraction trace was made of each
specimen. A diffracted beam monochromator was employed to prevent the iron x-ray
fluorescence from obscuring the diffracted peaks. The 200 and 311 austenite, 002/200 and
112/211 martensite integrated peak intensities were used in the direct comparison method.

The relations used were as follows

1 1 220
R= (V‘T) [IFiz P (suzggcszose)]( &)

Iy _ RyCy
la Ra Ca

Fhkl Z f eznl(hUn+kVn+'Wn)

F (Structure factor) = 4f for unmixed indices (fcc structures).
F =2f for h+k+l f=even number (bcc structures).

F =0 for h+k+l f=odd number(bcc structures).

* B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, MA (1967).
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P (Multiplicity factor) determined from Cullityt Appendix 9, p. 477.

sin 6/A determined from Cullity’ Appendix 7, p. 472.

f (Atomic Scattering factor) determined from Cullity? , Appendix 8, p. 475.
€-2m (Temperature factor) determined from Cullity? , Figure 14-5, p. 395.

Lorentz-Polarization factor determined from Cullityt , Appendix 10, p. 478.
V (Volume calculation) determined from Cullity', Figure 12-5, p.352: Austenite: VY =ad

= 45.691A3, Martensite: V, = a%c = 23.844A3.

Table B1 presents the x-ray diffraction data used for retained austenite content
calculations. Table B2 presents the retained austenite contents of the three specimens. An

average of about 3% was found in each specimen.

TABLE B1. X-RAY DIFFRACTION

Peak 1/V2 (A€) |F|2 P L-P g2m R
y- 200 4.79x10°4 2575.3 24 2.80 0.86 71.19
Y- 200 4.79x10"*  4018.3 6 8.28 0.95 90.84

a-002/200 1.76x10°3 745.0 6 4.82 0.91 34.78
a-112/211  1.76x10°3 534.6 24 3.11 0.88 61.69

TABLE B2. PERCENT RETAINED AUSTENITE

Normalizing Liquid N Retained
845 0 29+1.2
1095 24 hours 3.0+0.6
1095 0 3.2+0.8

t 8. D. Cullity, Elements of X-ray Diflraction, Addisol.-Wesley, Reading, MA (1967).
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Appendix C - Crack Tip Stresses

First order approximation calculati- ns were made of tlie stress fields around a crack

tip subjected to mode I (tension) and mode I (shear) loading configurations.
Mode 1

The cartesian coordinate stresses (G,, oy, and cxy) for mode I were calculated

using the following relations
Oy =""FT— core (1 singsin 92)
) Y anr 2 2 2
__K 0 (1 .0 36)
o,,-—\la; cosy \1+ sinz sin -

K, .0 0 36
Oyy = Sin7 COS5 COS 5
anr

.

These results are presented graphically in Figure C1 as a function of the angle (8). The

stress values in the figure, and in all figures contained in Appendix C, stresses are in units

of K/ \/ 2nr . The principal stresses were determined from these cartesian coordinate

stresses using Mohr's circle construction

Oy = al cosg- (1 + sin-g)
\ 2nr
o= K cosg (1 - sing)

o

nr

0,5 =0 (plane strain)
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Figure C1. Comparison of the cartesian coordinate stresses for fracture modes 1 and I1.
Stresses are in units of K/(2rr)'72. Zero degrees lies directly in front of the crack tip.
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The principal stresses are presented in Figure C2 as a function of the angle 6. The
effective stresses were calculated in the following way and are presented in graphical form

in Figure C3

2
Ot =\£": V(0470)2 + (05-03)2 + (63-0,)2

The hydrostatic or mean stress is determined simply by averaging the three principal

stresses (presented in Figure C4)

Mode 11

The cartesian coordinate stresses (0y, oy, @and o,,) for mode II were calculated

using the following relations

Oy = :j—;!—;:_ sing- (2 + cosg-cosa2—e)

o, =l cose sin = cos o2

’ ~ 2nr 272 2
Oy = Ky 0052(1-singsin§—e-)
Y N 2rr 2 2 2

These results are presented graphically in Figure C1 as a function of the angle (8). The

stress values in the figure, and in all figures contained in Appendix C, stresses are in units

of K,/ \2nrr. The principal stresses were determined from these cartesian coordinate
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Figure C2. Comparison of the principal stresses for fracture modes I and II. Stresses are
in units of K/(2rr)12. Zero degrees lies directly in front of the crack tip.
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Figure C3. Comparison of the effective stresses for fracture modes I and II. Stresses are in
units of K/(2rr)'2. Zero degrees lies directly in front of the crack tip.
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Figure C4. Comparison of the hydrostatic stresses for fracture modes I and 11. Stresses are
in units of K/(2rr)12. Zero degrees lies directly in front of the crack tip.
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stresses using Mohr's circle construction

.9 3 .
siny +'\/1 . Z—sm2e]

o = al [-
\Jan
K

02=\/E"n_r[-sing-\/1 - %—sinze ]

03=0

The principal stress resuits are presented in Figure C2. The effective and hydrostatic

stresses were calculated using the same equations used for mode I (og and oy). The

results for these stresses are presented in Figures C3 and C4 respectively.
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